Написать формулу трипептида ТРЕ-ЦИС-АРГ В какой среде (слабо-кислой

Написать формулу трипептида ТРЕ-ЦИС-АРГ. В какой среде (слабо-кислой, нейтральной, слабо-щелочной) находится его изоэлектрическая точка и почему?
Решение:
Треонин

Цистеин

Аргинин

Формула трипептида ТРЕ-ЦИС-АРГ

Пептидная молекула имеющая основную функцию (АРГ) в нейтральных рН несёт несбаллансированный положительный заряд, чтобы разрядить такую молекулу, необходимо подавить ионизацию основной группы, т.е. раскислить >N+(H)- внешним более сильным основанием, что достигается в области сильно основных рН (>10) и там же будет находиться pI молекулы.
Так как представленный трипептид имеет дополнительную основную группу, то его изоэлектрическая точка будет находится в щелочной среде (pH = 7)
Факторы устойчивости белков в растворе. Высаливание как метод разделения смеси белков.
Ответ:
Факторы устойчивости белков в растворе: заряд белковой молекулы и гидратная оболочка.
Появление заряда на молекулах белков связано с его амфотерными свойствами (наличием кислотных и основных свойств). Группы, способные приобретать заряды, называются ионогенными. К ним относятся – СООН группы глютамата, аспартата, –NH2 группы лизина, аргинина, азотимидазольного кольца гистидина. В очень незначительной степени ионизируются –SH группы цистеина и –OH группы тирозина. Ионизация различных функциональных групп белка групп определяется рН среды.
Ионизация кислотных групп (СООН — группы – доноры Н+).
При рН = 2-4 половина карбоксильных групп в белках находится в ионизированном состоянии (–СОО-), половина – в неионизированном виде(– СООН). В силу этого при рН 2-4 карбоксильные группы придают белкам буферные свойства. При физиологических значениях рН в интервале 7,35 – 7,45 (более щелочная среда) преобладает ионизированная форма карбоксильных групп, придающая белковым молекулам отрицательный заряд.
Н2N-белок-СООН — Н+ → Н2N-белок-СОО-
Ионизация щелочных групп (NH2-группы-акцепторы Н+)
При рН около 10 половина аминогрупп белков ионизирована, а половина не ионизирована. При рН = 10 NH2 – группы придают белкам буферные свойства. Физиологическое значение рН близкое к 7, является более кислой средой, поэтому, при физиологических величинах рН преобладает ионизированная форма аминогрупп (NH3+), придающая белковым молекулам положительный заряд.
Н2N-белок-СООН + Н+ → +Н3N-белок-СООН
Изоэлектрическое-электронейстральное состояние – это состояние, в котором сумма положительных зарядов равна сумме отрицательных зарядов и молекула в целом электронейтральна (+Н3N-белок-СОО-). Значение рН, при котором молекула белка электронейтральна, называется изоэлектрической точкой (ИЭТ). Для большинства белков изоэлектрическая точка находится в кислой среде (рН = 5-5,5). В то же время для гистонов ИЭТ находится в щелочной среде (рН= 9-11). В изоэлектрическом состоянии белки менее устойчивы, чем при наличии зарядов, поскольку заряд белковой молекулы является фактором электростатического отталкивания белковых молекул, определяют ионные связи в белках и формируют наиболее устойчивую конформацию белковой молекулы.

Гидратная оболочка – это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. Поверхность большинства белковых молекул заряжена отрицательно, и диполи молекул воды притягиваются к ней своими положительно заряженными полюсами. Чем больше в составе белковой молекулы и на ее поверхности аминокислот с полярными (гидрофильными) радикалами, тем сильнее выражена и прочнее удерживается гидратная оболочка и тем больше в ней слоев.
Высаливание (обратимая денатурация) – это процесс осаждения концентрированными растворами нейтральных солей (NaСl, (NН4)2SO4). Под действием факторов высаливания снижается устойчивость раствора белка и белок может выпасть в осадок. При этом не меняются и не утрачиваются биологические свойства белка, т.е. функции белка не нарушаются.
Высаливание используется для фракционирования белков, т.е. для разделения белков на фракции. Для разделения белков сыворотки крови (альбуминов и глобулинов) используют разные концентрации сернокислого аммония: при 50% насыщении высаливаются высокомолекулярные глобулины, а при 100% насыщении – альбумины. Способность к высаливанию наиболее выражена у анионов солей. При добавлении растворителя или при удалении анионов солей путем диализа структура белка может восстанавливаться. Процесс последовательного восстановления вторичной, третичной и четвертичной структур белка, сопровождающийся восстановлением биологических свойств белка, называется ренатурацией.

Механизм действия ферментов. Роль кофермента в химической реакции. Проферменты, изоферменты. Примеры. Иммо-билизованные ферменты, преимущества их использования в медицинской практике.
Ответ:
В основу теории механизма действия ферментов положено образование фермент-субстратного комплекса. Механизм действия фермента, исходя из работ Брауна, Михаэлиса и Ментен можно представить поэтапно:
1. образование фермент-субстратного комплекса (субстрат прикрепляется к активному центру фермента).
2. на второй стадии ферментативного процесса, которая протекает медленно, происходят электронные перестройки в фермент-субстратном комплексе. Фермент (Еn) и субстрат (S) начинают сближаться, чтобы вступить в максимальный контакт и образовать единый фермент-субстратный комплекс. Продолжительность второй стадии зависит от энергии активации субстрата или энергетического барьера данной химической реакции.
Энергия активации – энергия, необходимая для перевода всех молекул 1 моля S в активированное состояние при данной температуре. Для каждой химической реакции существует свой энергетический барьер. Благодаря образованию фермент-субстратного комплекса снижается энергия активации субстрата, реакция начинает протекать на более низком энергетическом уровне. Поэтому вторая стадия процесса лимитирует скорость всего катализа.
3. на третьей стадии происходит сама химическая реакция с образованием продуктов реакции. Третья стадия процесса непродолжительна. В результате реакции субстрат превращается в продукт реакции; фермент-субстратный комплекс распадается и фермент выходит неизмененным из ферментативной реакции. Таким образом, фермент дает возможность за счет образования фермент-субстратного комплекса проходить химической реакции обходным путем на более низком энергетическом уровне.

Кофермeнты (коэнзимы) – органические природные соединения, необходимые для осуществления каталитического действия ферментов. Эти вещества, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и термостабильны. Иногда под коферментами подразумевают любые низкомолекулярные вещества, участие которых необходимо для проявления каталитического действия фермента, в том числе и ионы, например К+, Mg2+ и Мn2+. Располагаются коферменты в активном центре фермента и вместе с субстратом и функциональными группами активного центра образуют активированный комплекс. Коферменты должны обладать по крайней мере двумя функциональными участками или группировками, ответственными за специфическое связывание с апоферментом и субстратом.
Коферменты принимают непосредственное участие в процессе ферментативного катализа. Эти группировки определяют специфичность того или иного фермента, принимают участие в связывании фермента с субстратом, а также стабилизируют белковую часть фермента. Коферменты активно включаются в химические реакции, выполняя функции промежутоных переносчиков электронов, атомов водорода или различных функциональных групп (например, аминных, ацетильных, карбоксильных). В подобных случаях кофермент рассматривают в качестве второго субстрата, или косубстрата.

Роль кофермента (Ко) в качестве переносчика атомов водорода может быть представлена в виде схемы, где SH – субстрат, КоЕ – холофермент, А – акцептор протона:

Субстрат подвергается окислению, отдавая электроны и протоны, а КоЕ – восстановлению, принимая электроны и протоны. В следующей полуреакции восстановленный КоЕН может отдавать электроны и протоны на какой-либо другой промежуточный переносчик электронов и протонов или на конечный акцептор.

Проферменты (проэнзимы, зимогены, энзимогены) – функционально неактивные предшественники ферментов, подвергающиеся тем или иным преобразованиям (обычно расщеплению специфическими эндо- или экзопептидазами или гидролизу), в результате чего образуется каталитически активный продукт – фермент. Относятся к группе протеиназ (сериновые, тиоловые, кислые). Синтез зимогенов осуществляется на рибосомах эндоплазматического ретикулума особыми секреторными клетками в виде зимогенных гранул, которые после завершения процесса мигрируют к поверхности клеток и затем секретируются в окружающую среду. Достигнув места действия они превращаются в активные формы ферментов. К ним относятся пепсиноген, активной формой которого является пепсин (основной протеолитический фермент желудочного сока), трипсиноген — трипсин, химотрипсиноген — химотрипсин, прокарбоксилепептидазы — карбоксипептидазы (ферменты поджелудочной железы) и др. К зимогенам относятся ферменты свёртывания крови (факторы свёртывания крови), компоненты и факторы системы комплемента.

Изоферменты (изоэнзимы, изозимы) – это ферменты, катализирующие одну и ту же реакцию, но отличающиеся друг от друга по аминокислотному составу, порядку связывания аминокислот, электрофоретической подвижности, константе Михаэлиса, локализации в клетке и органе. Изоферменты выполняют одинаковые биологические функции, но с различной эффективностью.
Например, лактатдегидрогеназа (ЛДГ) — олигомер, состоящий из 4 протомеров одного или двух типов, обозначаемых: Н (сердце) и М (мышцы). ЛДГ существует в 5 формах, легко различающихся с помощью электрофореза. Пять изоферментов ЛДГ имеют следующий полипептидный состав: ЛДГ1 — (Н4); ЛДГ2 — (Н3М); ЛДГ3 —(Н2М2); ЛДГ4 — (НМ3); ЛДГ5 — (М4). Различные ткани человека имеют свои характерные изоферментные спектры. В сердечной мышце и почках наиболее высокой активностью обладают изоферменты ЛДГ1 и ЛДГ2. В печени и скелетной мускулатуре максимальны ЛДГ5. В селезенке, поджелудочной железе, щитовидной железе, надпочечниках — ЛДГ3.

Иммобилизованные ферменты – препараты ферментов, молекулы которых связаны с матрицей, или носителем (как правило, полимером), сохраняя при этом полностью или частично свои каталитические свойства. Иммобилизованные ферменты обычно не растворяются в воде; между двумя фазами возможен обмен молекулами субстрата, продуктов каталитической реакции, ингибиторов и активаторов.
Коммерческое использование ферментов ограничено рядом факторов. Важнейшие из них – нестабильность ферментов и их высокая стоимость. Стоимость можно существенно снизить за счет иммобилизации фермента. Это означает, что фермент закрепляют на поверхности или внутри твердой подложки, которую легко удаляют из реакционной смеси после завершения ферментации. Фермент может быть использован повторно, что существенно снижает стоимость процесса.
Другое преимущество иммобилизации заключается в том, что фермент становится более стабильным, вероятно, за счет ограничения его способности денатурировать при изменениях рН, температуры и растворителей. К примеру, иммобилизованная глюкозоизомераза стабильна при 65°С в течение года, тогда как в растворе она денатурирует при 45 °С за несколько часов.
Иммобилизованный фермент можно использовать для непрерывного (открытого) производства, пропуская реагенты через фермент и собирая продукт на конечном этапе.

Синтез коферментов из витаминов. Примеры.
Ответ:
Пантотеновая кислота используется в клетках для синтеза кофермен-тов: 4-фосфопантотеина и КоА

Все формы витамина В6 используются в организме для синтеза коферентов: пиридоксальфосфата и пиридоксаминфосфата. Коферменты образуются путём фосфорилирования по гидроксиметильной группе в пятом положении пиримидинового кольца при участии фермента пиридоксалькиназы и АТФ как источника фосфата.

Пиридоксалевые ферменты играют ключевую роль в обмене аминокислот: катализируют реакции трансаминирования и декарбоксилирования аминокислот, участвуют в специфических реакциях метаболизма отдельных аминокислот: серина, треонина, триптофана, серосодержащих аминокислот.
Биотин используется в образовании малонил-КоА из ацетил-КоА, в синтезе пуринового кольца, а также в реакции карбоксилирования пирувата с образованием оксалоацетата.
Фолиевой кислоты определяется тем, что она служит субстратом для синтеза коферментов, участвующих в реакциях переноса одноуглеродных радикалов различной степени окисленности: метальных, оксиметильных, формильных и других. Эти коферменты участвуют в синтезе различных веществ: пуриновых нуклеотидов, превращении с!УМФ в сПГМФ, в обмене глицина и серина.
Витамин В12 служит источником образования двух коферментов: метилкобаламина в цитоплазме и дезоксиаденозилкобаламина в митохондриях.

Аскорбиновая кислота – лактон кислоты, близкой по структуре к глюкозе. Существует в двух формах: восстановленной (АК) и окисленной (дегидроаскорбиновой кислотой, ДАК).

Обе эти формы аскорбиновой кислоты быстро и обратимо переходят друг в друга и в качестве коферментов участвуют в окислительно-восстановительных реакциях.

Строение и биологическая роль витамина биотина (витамина Н).
Ответ:
Молекула биотина является циклическим производным мочевины, а боковая цепь представлена валериановой кислотой.

Карбонильная группа биотина связывается амидной связью с ε-амино-группой лизина, образуя ε-N-биотиниллизин (биоцитин), обладающий биологической активностью. Природные сложные белки, содержащие
Биологическая роль.
Известные биотиновые ферменты (т.е. ферменты, содержащие в качестве кофермента биотин) катализируют два типа реакций:
1) реакции карбоксилирования (с участием СО2 или НСО3–), сопряженные с распадом АТФ
RH + HCO3– + АТФ <=> R-COOH + АДФ + Н3РО4
2) реакции транскарбоксилирования (протекающие без участия АТФ), при которых субстраты обмениваются карбоксильной группой
R1-COOH + R2H <=> R1H + R2-COOH
Получены доказательства двустадийного механизма этих реакций с образованием промежуточного комплекса (карбоксибиотинилфермент). К реакциям первого типа относятся, например, ацетил-КоА- и пируваткарбоксилазные реакции:
CH3–CO–S-KoA + CO2 + АТФ <=> HOOC–CH2–CO–KoA + АДФ + Pi.
Пируваткарбоксилаза является высокоспецифичным ферментом, катализирующим уникальную реакцию усвоения СО2 в организме животных.
Сущность реакции сводится к пополнению запасов оксалоацетата (щавелевоуксусная кислота) в лимоннокислом цикле (так называемые «анаплеротические», «пополняющие» реакции), т.е. его синтезу из СО2 и пирувата:
Пируват + CO2 + АТФ + H2O —> Оксалоацетат + АДФ + Pi + 2H+
Реакция протекает в две стадии: на первой стадии, связанной с затратой энергии, СО2 подвергается активированию, т.е. ковалентному связыванию с биотином в активном центре фермента (Е-биотин):

На второй стадии СО2 из комплекса переносится на пируват с образованием оксалоацетата и освобождением фермента:

Примером второго типа реакций является метилмалонил-оксалоацетат-транскарбоксилазная реакция, катализирующая обратимое превращение пировиноградной и щавелевоуксусной кислот:

Реакции карбоксилирования и транскарбоксилирования имеют важное
значение в организме при синтезе высших жирных кислот, белков, пури-
новых нуклеотидов (соответственно нуклеиновых кислот) и др.

Макроэнергетические соединения. Роль креатинфосфата и нуклеотидтрифосфатов в энергетике клетки. Перенос энергии в клетках.
Ответ:
Макроэргические соединения – органические соединения живых клеток, содержащие богатые энергией, или макроэргические связи. Эти соединения образуются в результате фото- и хемосинтеза и биологического окисления. К Макроэргическим соединениям относятся аденозинтрифосфорная кислота (АТФ) и другие вещества, распад которых сопровождается освобождением свободной энергии, используемой клетками для осуществления биосинтеза необходимых веществ или различных видов работы.
АТФ (аденозинтрифосфорная кислота) – нуклеотид, образованный аденозином и тремя остатками фосфорной кислоты. Во всех живых организмах выполняет роль универсального аккумулятора и переносчика энергии. Под действием специальных ферментов концевые фосфатные группы отщепляются с освобождением энергии, которая идет на синтетические и другие процессы жизнедеятельности.
Аденозиндифосфат (АДФ) – нуклеотид, образованный аденозоном и двумя остатками фосфорной кислоты. Участвует в энергетическом обмене живых организмов.
АДФ получает энергию путем дефосфорилирование фосфоэнолпировиноградной кислоты под действием фермента трансфосфорилазы, которая переносит макроэргическую связь с кислоты на АДФ.
Уридиндифосфорная кислота (УДФ) и ее производные принимают участие во взаимопревращении углеводов.
При биосинтезе гликозидной связи используется уридиндифосфатглюкоза (УДФГ), образующаяся из глюкозы‑1‑фосфата и уридинтрифосфата (УИФ). Если УДФГ передает глюкозу фруктозе, то образуется сахароза, а если цепочке декстрина – полисахарид. Аналогично образуются гликозиды, гликопротеиды и др.
Взаимопревращение моносахаридов проходит через фосфорные эфиры сахаров или их уридиндифосфатпроизводные (УДФ-производные). УДФ-производные сахаров представляют собой тот или иной сахар, соединенный через два остатка фосфорной кислоты с уридином.
Сахарофосфаты являются источником фосфорного питания растений. Могут быть соли орто-, мета- и пирофосфорной кислоты и органические фосфаты. Лучшие из них – водорастворимые калиевые, натриевые, аммониевые, кальциевые и магниевые соли фосфорной кислоты.
Отщепление фосфатных остатков от молекул АТФ происходит при участии аденозинтрифосфатаз (АТФ-аз) — ферментов класса гидролаз, широко распространенных в клетках всех организмов и обеспечивающих использование энергии АТФ для осуществления различных процессов жизнедеятельности. Группа транспортных АТФ-аз осуществляет активный перенос ионов, аминокислот, нуклеотидов, Сахаров и других веществ через биологические мембраны, создание и поддержание градиентов концентраций ионов (ионных градиентов) по обе стороны биологических мембран. Активный транспорт ионов, обеспечиваемый за счет энергии гидролиза АТФ, лежит в основе биоэнергетики клетки, процессов клеточного возбуждения, поступления в клетку и выведения веществ из клетки и организма, К важнейшим транспортным АТФ-азам, обеспечивающим перенос ионов при гидролизе АТФ, относятся Н+ — АТФ-аза мембран митохондрий, хлоропластов и бактериальных клеток, Са2+ — АТФ-аза внутриклеточных мембран мышечных клеток и эритроцитов, а также содержащаяся практически во всех плазматических мембранах Na+, К+АТФ-аза. В результате осуществляемого этими ферментами транспорта ионов против градиента их концентраций на мембране генерируется разность электрических потенциалов. Нарушение функционирования транспортных АТФ-аз (например, выключение АТФ-аз в условиях гипоксии в отсутствие АТФ) ведет к развитию многих патологических состояний. Известны лекарственные средства (например, сердечные гликозиды), регулирующие активность этих ферментов.
Расщепление АТФ может сопровождаться не только переносом фосфорильной группы на молекулу-акцептор, как это происходит в реакциях, катализируемых киназами, но и переносом пирофосфатной группы (например, при синтезе пуринов), остатка адениловой кислоты (при активации аминокислот в процессе синтеза белка) или аденозина (биосинтез S-аденозилметионина).
АТФ образуется из аденозиндифосфорной кислоты (АДФ) в результате окислительного фосфорилирования при переносе электронов в митохондриальной электронпереносящей цепи или в результате фосфорилирования на уровне субстрата. Содержание АТФ в клетке непосредственно связано с содержанием других аденозинфосфорных кислот — АДФ и адениловой кислоты (АМФ), образующих систему адениловых нуклеотидов клетки. Суммарная концентрация адениловых нуклеотидов в клетке равна 2—15 мМ, что составляет приблизительно 87% общего фонда свободных нуклеотидов. Существенную роль в поддержании равновесия между аденозинфосфорными кислотами играет обратимая и практически равновесная реакция, катализируемая ферментом аденилаткиназой (аденилаткиназу мышечной ткани называют миокиназой): АТФ + АМФ = 2 АДФ.

Креатинфосфат – продукт обратимого метаболического N-фосфорилирования креатина, являющийся, подобно АТФ, высокоэнергетическим соединением. Однако, в отличие от АТФ, гидролизуемой по пирофосфатной связи O-P, креатин гидролизуется по фосфамидной связи N-P, что обуславливает значительно больший энергетический эффект реакции. Так, при гидролизе изменение свободной энергии для креатина G0~ −43 кДж/моль, в то время как при гидролизе АТФ до АДФ G0 = −40-60 кДж/моль.
Креатинфосфат содержится преимущественно в возбудимых тканях (мышечная и нервная ткани) и его биологической функцией является поддержание постоянной концентрации АТФ за счёт обратимой реакции перефосфорилирования:
креатинфосфат + АДФ ⇔ креатин + АТФ
Эта реакция катализируется цитоплазматическими и митохондриальными ферментами-креатинкиназами; при расходе (и, соответственно, падении концентрации) АТФ, например, при сокращении клеток мышечной ткани, равновесие реакции сдвигается вправо, что ведёт к восстановлению нормальной концентрации АТФ.
Концентрация креатинфосфата в покоящейся мышечной ткани в 3-8 раз превышает концентрацию АТФ, что позволяет компенсировать расход АТФ во время кратких периодов мышечной активности, в период покоя при отсутствии мышечной активности в ткани идёт гликолиз и окислительное фосфорилирование АДФ в АТФ, в результате чего равновесие реакции смещается влево и концентрация креатинфосфата восстанавливается.
В тканях креатинфосфат подвергается самопроизвольному неферментативному гидролизу с циклизацией в креатинин, выводящийся с мочой, уровень выделения креатинина зависит от состояния организма, меняясь при патологических состояниях, и является диагностическим признаком.

Уронатный путь обмена глюкозы. Использование УДФ-глюкуроновой кислоты для обезвреживания ядовитых веществ и синтеза полисахаридов соединительной и костной ткани. Примеры реакций.
Ответ:
Уронатный путь обмена глюкозы – источник глюкуроновой кислоты, которая используется для синтеза гликозаминогликанов (углеводных производных протеогликанов – белков соединительной ткани) и принимает участие в обезвреживании токсинов в печени. При сахарном диабете при избыточном количестве глюкозы из неё начинает синтезироваться в больших количествах глюкуроновая кислота и гликозаминогликаны. Последние, откладываясь в хрящевой ткани, сухожилиях.
Глюкуроновый путь осуществляется в печени и в клетках соединительной ткани. Первая часть процесса (до образования УДФ-глюкозы) совпадает с реакциями синтеза гликогена, заключительный этап (от ксилулозо-5-ф до гл-6-ф) совпадает с неокислительным этапом ПФП
Значение глюкуронового пути:
1. Образование активированного глюкуроната.
В гепатоцитах УДФ-глюкуроновая кислота используется на процессы обезвреживания (реакции конъюгации с билирубином, продуктами гниения белков, лекарствами и др.).
В фибробластах УДФ-глюкуроновая кислота используется на синтез гетерополи- сахаридов (гиалуроновая кислота, хондроитинсульфат, дерматансульфат, гепарин).
2. Дополнительный источник пентоз.
3. Путь включения пищевого ксилитола в метаболизм.
4. Поставляет гулоновую кислоту на синтез аскорбата. Аскорбат синтезируется из гулоновой кислоты с участием двух специфических ферментов. Один из этих ферментов отсутствует у человека (отсутствует также у высших приматов, морской свинки, индийской летучей мыши), поэтому аскорбат не синтезируется и должен поступать с пищей.

В печени происходит обезвреживание парных нетоксичных соединений путём присоединения к обезвреживаемым продуктам Н2SО4, глюкуроновой кислоты, глицина.
Серная кислота в процессах обезвреживания участвует в активной форме ФАФС – фосфоаденозилфосфосульфат (состав: аденин – рибоза – фосфат – сульфат — фосфат).
Калиевая соль индоксилсерной кислоты называется индиканом, выводится через почки. Повышенное количество индикана в моче свидетельствует об усилении гнилостных процессов.
Глюкуроновая кислота в процессах детоксикации участвует в активной форме в виде УДФ-глюкуроновой кислоты (состав: урацил-рибоза-фосфат-фосфат-глюкуроновая кислота)

Глицин, взаимодействуя с бензойной кислотой, образует гиппуровую кислоту. На данной реакции основана проба Квика для оценки антитоксической функции печени. Более современная антипириновая проба характеризует активность микросомального окисления в печени.

В реакциях взаимопревращения галактозы и других моносахаридов в качестве промежуточных продуктов образуются нуклеозиддифосфатпроизводные соответсвующих моносаха-ридов. На первом этапе таких превращений галактоза фосфорилируется с участием фермента галактокиназы, в результате образуется галактозо-1-фосфат:

галактоза галактозо-1-фосфат

На следующей стадии галактозо-1-фосфат взаимодействует с уридинтрифосфатом (УТФ). Эту реакцию катализирует фермент галактозо-1-фосфатуридилилтрансфераза, под действием которого обрагалактозо-1-фосфат УДФ-галактоза. Образуется нуклеотидное производное галактозы – уридиндифосфат-галактоза (УДФ-галактоза) и пирофосфат.
В дальнейшем УДФ-галактоза изомеризуется в УДФ-глюкозу под действием специфической НАД-зависимой 4-эпимеразы:

УДФ-галактоза УДФ-глюкоза

После гидролитического расщепления УДФ-глюкоза распадается на два продукта – глюкозо-1-фосфат и уридинмонофосфат (УМФ):

УДФ-глюкоза глюкозо-1-фосфат
Глюкозо-1-фосфат может далее изомеризоваться в глюкозо-6-фосфат, а глюкозо-6-фосфат – во фруктозо-6-фосфат. Таким образом, посредством указанных реакций галактоза может превращаться во фруктозо-6-фосфат, который включается в реакции дыхания, или в глюкозо-6-фосфат, способный превращаться в продукты пентозофосфатного цикла.
Возможен также синтез галактозо-1-фосфата из глюкозо-1-фосфата, так как в клетках организмов содержится фермент глюкозо-1-фосфатури-дилилтрансфераза, катализирующий образование УДФ-глюкозы из глюкозо-1-фосфата и УТФ:
глюкозо-1-фосфат + УТФ → УДФ-глюкоза + Н4Р2О7
Затем УДФ-глюкоза под действием 4-эпимеразы изомеризуется в УДФ-галактозу, при гидролизе которой образуется галактозо-1-фосфат:
УДФ-галактоза + Н2О →галактозо-1-фосфат + УМФ
Взаимопревращения гексоз и пентоз осуществляются в пентозофосфатном цикле и цикле Кальвина. Важное значение для этих реакций имеют ферменты транскетолаза и трансальдолаза, а в пентозо-фосфатном цикле – ещё и фермент фосфоглюконатдегидрогеназа, ката-лизирующий окислительное декарбоксилирование 6-фосфоглюконовой кислоты с образованием рибулозо-5-фосфата. Этот фермент фактически осуществляет превращение гексозы в пентозу. Во взаимных превращениях пентоз также участвуют ферменты рибулозо-фосфатэпимераза и рибозофосфатизомераза, поддерживающие динамическое равновесие между рибулозо-5-фосфатом, с одной стороны, и ксилулозо-5-фосфатом и рибозо-5-фосфатом, с другой стороны.
Ксилоза и арабиноза синтезируются также из гексоз, но другим путём. При этом в качестве промежуточных продуктов образуются нуклеотидные производные глюкуроновой и галактуроновой кислот. На первом этапе осуществляется ситез УДФ-глюкозы из глюкозо-1-фосфата и
УТФ, а затем под действием фермента УДФ-глюкозодегидрогеназы УДФ-глюкоза окисляется в УДФ-глюкуроновую кислоту:

УДФ-глюкоза УДФ-глюкуроновая кислота
Затем УДФ-глюкуроновая кислота подвергается декарбоксили-рованию и превращению в пиранозную форму УДФ-ксилозы:

УДФ-глюкуроновая кислота УДФ-ксилоза
По аналогичному механизму осуществляется синтез УДФ-арабинозы из УДФ-галактозы, при этом в качестве промежуточного продукта образуется УДФ-галактуроновая кислота. УДФ-арабиноза так же, как и УДФ-ксилоза, не накапливается в растительных тканях, а используется для синтеза арабанов. Кроме того, возможны взаимные превращения УДФ-глюкуроновой и УДФ-галактуроновой кислот, а также пираназных форм УДФ-ксилозы и УДФ-арабинозы под действием соответствующих 4-эпимераз.
УДФ-глюкуроновая кислота УДФ-галактуроновая кислота
УДФ-галактуроновая кислота является основным источником галактуроновой кислоты для синтеза пектиновых веществ, а УДФ-глюкуроновая кислота участвует в синтезе ксиланов (в качестве ответвлений), полиуренидов, аскорбиновой кислоты.

Использованная литература
Комов В.П. Биохимия. Москва. Дрофа. 2008
Морозкина Т. С., Мойсеёнок А. Г. Витамины. — Минск: Асар. 2002
Тюкавкина Н.А. Биоорганическая химия. Москва. Дрофа. 2004
Овчинников Ю.А. Биоорганическая химия. Москва. Просвещение. 1987.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

1 × один =

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock detector