Тонкий гладкий стержень расположенный в вертикальной плоскости

Тонкий гладкий стержень, расположенный в вертикальной плоскости, изогнут так, что состоит из прямолинейного участка и двух дуг окружностей радиусом R = 0,5 м, r = 0,6R м, сопряженных в точке K. На стержень нанизан шар весом Р, прикрепленный к пружине с коэффициентом жесткости . Другой конец пружины закреплен в точке О. Длина пружины в недеформированном состоянии равна l0. Шар начинает двигаться из положения А, определяемого углом без начальной скорости. Достигнув точки В, показанной на рисунке, шар освобождается от пружины и дальше движется только под действием силы тяжести. Считая шар материальной точкой, определить, какую скорость он будет иметь, придя в точку D. Исходные данные: l0 = 0,8R; k = 2; = 30. Решение: Составим расчетную схему – рис. 10. Рассмотрим шар в произвольном положении и изобразим действующие на него силы: — сила тяжести; — нормальная опорная реакция; — сила упругости пружины, действующая на участке АВ. Воспользуемся теоремой об изменении кинетической энергии материальной точки: где — сумма работ внешних сил, действующих на точку, при перемещении ее из начального положения в конечное. Так как шарик движется без начальной скорости (VA = 0), то теорема принимает вид: Рис. 10 Вычислим работы сил, действующих на шарик. Так как нормальная реакция всегда перпендикулярна перемещению, то Работа силы тяжести: Работа силы упругости пружины при перемещении на участке АВ определяется по формуле: где 0 и 1 – начальное и конечное удлинение пружины; м; м, т.е. 1 = 0; Подставим найденные значения работ в уравнение теоремы: Отсюда скорость шарика в точке D: м/с. Ответ: м/с.

Тип работы:

Контрольная работа

Предмет:

Теоретическая механика

Статус:

выполнено

Стоимость. Рублей:

110

Дата выполнения:

2015-04-24

Understand your user experience

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Read More

remain responsive across devices

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Read More

fall in love with our features

Real time stats

Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec mattis, pulvinar dapibus leo.

Multilingual & translatable

Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec mattis, pulvinar.

Less plugins needed

Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec mattis, pulvinar dapibus leo.

Amazingly responsive

Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec mattis, pulvinar dapibus leo.

Community builder

Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec mattis, pulvinar dapibus leo.

Easy to use interface

Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec mattis, pulvinar dapibus leo.

Выполним любую работу на заказ

У нас вы можете заказать уникальное решений этой задачи или любой другой

Adblock detector